EspaƱol
ABOUT US | CONTACT | VOLUNTEER
MISSION & MINISTRY
Find a Physician
Decrease (-) Restore Default Increase (+)

Definition:

Neonatal respiratory distress syndrome (RDS) is most commonly a complication seen in premature infants. The condition makes it difficult to breathe.



Alternative Names:

Hyaline membrane disease; Infant respiratory distress syndrome (IRDS); Respiratory distress syndrome in infants; RDS - infants



Causes, incidence, and risk factors:

Neonatal RDS occurs in infants whose lungs have not yet fully developed.

The disease is mainly caused by a lack of a slippery, protective substance called surfactant, which helps the lungs inflate with air and keeps the air sacs from collapsing. This substance normally appears in mature lungs.

It can also be the result of genetic problems with lung development.

The earlier a baby is born, the less developed the lungs are and the higher the chance of neonatal RDS. Most cases are seen in babies born before 28 weeks. It is very uncommon in infants born full-term (at 40 weeks).

In addition to prematurity, the following increase the risk of neonatal RDS:

  • A brother or sister who had RDS
  • Diabetes in the mother
  • Cesarean delivery
  • Delivery complications that lead to acidosis in the newborn at birth
  • Multiple pregnancy (twins or more)
  • Rapid labor

The risk of neontal RDS may be decreased if the pregnant mother has chronic, pregnancy-related high blood pressure or prolonged rupture of membranes, because the stress of these situations cause the infant's lungs to mature sooner.



Symptoms:

The symptoms usually appear within minutes of birth, although they may not be seen for several hours. Symptoms may include:

  • Bluish color of the skin and mucus membranes (cyanosis)
  • Brief stop in breathing (apnea)
  • Decreased urine output
  • Grunting
  • Nasal flaring
  • Puffy or swollen arms or legs
  • Rapid breathing
  • Shallow breathing
  • Shortness of breath and grunting sounds while breathing
  • Unusual breathing movement -- drawing back of the chest muscles with breathing


Signs and tests:

A blood gas analysis shows low oxygen and excess acid in the body fluids.

A chest x-ray shows respiratory distress. The lungs have a characteristic "ground glass" appearance, which often develops 6 to 12 hours after birth. Lung function studies may be needed.

Lab tests are done to rule out infection and sepsis as a cause of the respiratory distress.



Treatment:

High-risk and premature infants require prompt attention by a neonatal resuscitation team.

Despite greatly improved RDS treatment in recent years, many controversies still exist. Delivering artificial surfactant directly to the infant's lungs can be enormously important, but how much should be given and who should receive it and when is still under investigation.

Infants will be given warm, moist oxygen. This is critically important, but needs to be given carefully to reduce the side effects associated with too much oxygen.

A breathing machine can be lifesaving, especially for babies with the following:

  • High levels of carbon dioxide in the arteries
  • Low blood oxygen in the arteries
  • Low blood pH (acidity)

It can also be lifesaving for infants with repeated breathing pauses. There are a number of different types of breathing machines available. However, the devices can damage fragile lung tissues, and breathing machines should be avoided or limited when possible.

A treatment called continuous positive airway pressure (CPAP) that delivers slightly pressurized air through the nose can help keep the airways open and may prevent the need for a breathing machine for many babies. Even with CPAP, oxygen and pressure will be reduced as soon as possible to prevent side effects associated with excessive oxygen or pressure.

A variety of other treatments may be used, including:

  • Extracorporeal membrane oxygenation (ECMO) to directly put oxygen in the blood if a breathing machine can't be used
  • Inhaled nitric oxide to improve oxygen levels

It is important that all babies with RDS receive excellent supportive care, including the following, which help reduce the infant's oxygen needs:

  • Few disturbances
  • Gentle handling
  • Maintaining ideal body temperature

Infants with RDS also need careful fluid management and close attention to other situations, such as infections, if they develop.



Support Groups:



Expectations (prognosis):

The condition often worsens for 2 to 4 days after birth with slow improvement thereafter. Some infants with severe respiratory distress syndrome will die, although this is rare on the first day of life. If it occurs, it usually happens between days 2 and 7.

Long-term complications may develop as a result of oxygen toxicity, high pressures delivered to the lungs, the severity of the condition itself, or periods when the brain or other organs did not receive enough oxygen.



Complications:

Air or gas may build up in:

  • The space surrounding the lungs (pneumothorax)
  • The space in the chest between two lungs (pneumomediastinum)
  • The area between the heart and the thin sac that surrounds the heart (pneumopericardium)

Other complications may include:



Calling your health care provider:

This disorder usually develops shortly after birth while the baby is still in the hospital. If you have given birth at home or outside a medical center, seek emergency attention if your baby develops any difficulty breathing.



Prevention:

Preventing prematurity is the most important way to prevent neonatal RDS. Ideally, this effort begins with the first prenatal visit, which should be scheduled as soon as a mother discovers that she is pregnant. Good prenatal care results in larger, healthier babies and fewer premature births.

Avoiding unnecessary or poorly timed cesarean sections can also reduce the risk of RDS.

If a mother does go into labor early, a lab test will be done to determine the maturity of the infant's lungs. When possible, labor is usually halted until the test shows that the baby's lungs have matured. This decreases the chances of developing RDS.

In some cases, medicines called corticosteroids may be given to help speed up lung maturity in the developing baby. They are often given to pregnant women between 24 and 34 weeks of pregnancy who seem likely to delivery in the next week. The therapy can reduce the rate and severity of RDS, as well as the rate of other complications of prematurity, such as intraventricular hemorrhage, patent ductus arteriosus , and necrotizing enterocolitis. It is not clear if additional doses of corticosteroids are safe or effective.



References:

Cloherty J, Stark A, Eichenwald E. Manual of Neonatal Care. 5th ed. Lippincott, Wilkins and Williams; 2003.

Cole FS. Defects in surfactant synthesis: clinical implications. Pediatr Clin North Am. Oct 2006; 53(5): 911-27.

Courtney SE. Continuous positive airway pressure and noninvasive ventilation. Clin Perinatol. Mar 2007; 34(1): 73-92.

Kinsella JP, Inhaled nitric oxide in the premature newborn. J Pediatr. Jul 2007; 151(1): 10-5.

Lampland AL. The role of high-frequency ventilation in neonates: evidence-based recommendations. Clin Perinatol. Mar 2007; 34(1): 129-44.

Stevens TP. Surfactant replacement therapy. Chest. May 2007; 131(5): 1577-82.




Review Date: 6/1/2009
Reviewed By: Daniel Rauch, MD, FAAP, Director, Pediatric Hospitalist Program, Associate Professor of Pediatrics, NYU School of Medicine, New York, NY. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Medical Director, A.D.A.M., Inc. Previously reviewed by Alan Greene, MD, FAAP, Department of Pediatrics, Stanford UniversitySchool of Medicine, Lucile Packard Children's Hospital; Chief MedicalOfficer, A.D.A.M., Inc.

The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. © 1997- A.D.A.M., Inc. Any duplication or distribution of the information contained herein is strictly prohibited.
adam.com


About Us



Emanuel Cancer Centers 2013 Annual Report
Joint Notice of Privacy Practices
Accreditation & Quality Measures
Board of Directors
CEO's Message
Community Crisis Information
Maps & Directions
Mission & Ministry
News & Publications
Volunteer

Care & Services



Emanuel Physician Finder

Employees & Physicians



Tenet Application Process
e-MC Physician Portal
Web Mail
Employment Services
Physician Verification
Living in Turlock
Contact Us

Emanuel Medical Center
825 Delbon Avenue
Turlock, CA 95382
(209) 667-4200
Contact Us
© 2014 Emanuel Medical Center, Inc. All rights reserved
Home   |   Site Map   |   Joint Notice of Privacy Practices